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Superheavy Magnetic Monopoles and Msin Sequence Stars 

Katherine Freese, Joshua A. Frieman, Michael S. Turner 

ADSTRACT 

We investigsk the inkractioas of superheavy (m - ld’ - 10” GeV/cl) monopoles, moving 
with initial velocities vM - 10-l - lti c, with stars (mam 0.6 - 25%). Over the main-nqueace 
lifetime, stars accumulate signilicant numbers of mouopolea less massive than 5X ld’ (g/g&V; 
c.~., for m u 10” GeV and vy 1: 10% the number captured is = l@ F-,@ (M/hbp’(where *o 
is the Dirac charge and the monopole flux is F-m ltrl’ cm-* MC-~ 61“). Captored monopoles clue- 
ter near the skllar center, supported against &ravity by their weak thermal pressore and in some 
cases by convection and inagnetie fields. There they generate heat by annihilating and, possibly, 
by catalyziog the decay of baryons. Although the local energy generation by monopdm may be 
much larger than that due to thermonuclear reactions, their contribution to the total skllar kmi- 
nosity, and their eUects on the structure or stars, are likely to be unobservahk sa Ions m the flux 
is substantially below tbe Parker bound (F-18 << 1). We also consider the possibility that mono- 
poles may be ejected ‘from stars by magnetic fields. Although there is substantial uncertainty 
regarding interior stellar 6eld configurations, we argue that all but the strongly magnetic stars 
will retain a substantial fraction of the monopole they captore. 

I. Introduction 

Since magnetic monopoles were discovered to be a generic feature of grand 

unified gauge theories (GUTS) (‘t Hooft 1974, Polyakov 1974), there has been con- 

siderable interest in their astrophysical and cosmological implications. GUTS 

predict that the very early universe underwent a symmetry-breaking phase tran- 

sition at a temperature T, - Mx - 10” GeV, where Mx is the mass of an ass- 

ciated gauge boson. When the symmetry is broken, monopoles of msss m, - 

&I~ - lo’* GeV form as topologically stable defects (where o is the gauge cou- 

pling constant). Their magnetic charge g satisfies Dirac’s (1931) quantization con- 

dition g = ngn (for n integer), where gn = 6c/2e N 69e = 3.3X10-8 esu, and 

their mass mM - lOa gm is almost macroscopic. In addition, GUT monopoles 

are distinguished by the remarkable ability to catalyze baryon number violating 
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reactions at a rate characteristic of the strong interactions, u, (v/c) N lOba cm2 

(Rubakov 1981,1982, Callan 1982a,b; see also Goldhaber 1983, Callan and Witten 

1984, Bennett 1985, Sen 1985). These features suggest that monopoles may have 

unusual astrophysical signatures if they are abundant today. 

The theoretical predictions for the monopole abundance are problematic: in 

the standard cosmology, far too many monopoles survive annihilation for the 

universe to have reached its present state (Zel’dovich and Khlopov 1979, Preskill 

1979,1983), while inflationary models (Guth 1981, Liide 1982, Albrecht and 

Steinhardt 1982), which were designed in part to alleviate this overabundance, 

generally leave no trace of monopoles at all (but see Turner 1082, Lazarides and 

Shafi 1983, Collins and Turner 1984, Lindblom and Steinhardt 1984). Although 

neither of these extremes is astrophysically promising, we can alternatively con- 

sider the cosmological monopole density as a free parameter and ask what obser- 

vational consequences follow. That is the approach of this paper. So far, this line 

of reasoning has led to several theoretical arguments placing upper Limits on the 

monopole flux. These generally fall into two categories (for reviews, see, e.g., 

Turner 1983a,1984). In the first, the survival of magnetic fields (either primordial 

or dynamogenerated) over long periods limits the rate at which they can be des- 

troyed by monopoles; for example, the galactic field yields the Parker bound FM 

s lo-l6 cme2 set-r sr-’ (Parker 1970,1971; Turner,Parker, and Bogdan 1982). In 

the second category, the requirement that the luminosity produced by monopole- 

catalyzed nucleon decay in, e.g., neutron stars be unobservable gives a limit on 

the product of the flux and the catalysis cross-section Fw-= s 

10e2’ cme2 se@ sr-l (where uc (v/c) = a-:, 1Oess cm2; Kolb, Colgate, and Har- 

vey 1982, Dimopoulos, Preskii, and Wilczek 1982, Freese, Turner, and Schramm 

1983; for a recent review, see Kolb and Turner 1984). Both of these limits are 

subject to controversy involving such issues as Landau damping of plasma oscilla- 
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tions (Arons and Blandford lQ83, Salpeter, Shapiro and Wasserman 1982, Turner, 

Parker, and Elogdan 1082, Parker 1984) and the structure of neutron star interi- 

ors (Harvey 1084a,b, Harvey, Ruderman, and Shaham 1984). [ In the second 

category, a slightly weaker but better understood limit comes from catalysis in 

white dwarfs, Fr,, 0-m ( lo-l8 cmm2 see-’ sr-l (Freese 1984).] In the next few 

years, monopole detectors should be able to probe a Bux just below the Parker 

limit (see Stone 1984); on the other hand, if the catalysis limits are valid, and if 

9% N I, the prospects for direct detection of monopoles are nonexistent. 

Wherefore, then, monopoles and main sequence stars ? This paper serves two 

purposes. First, since stars on the main sequence (MS) have much larger surface 

areas, one might expect they capture many more monopoles during this period 

than they do as neutron stars. Assuming these monopoles survive throughout tne 

MS phase, the flux limits due to neutron star catalysis can be strengthened by up 

to seven orders of magnitude (Freese, Turner, Schramm 1983). Thus our first goal 

is to examine the conditions under which monopoles captured on the MS in fact 

survive. This includes consideration of such processes as m annihilation and 

ejection by stellar magnetic fields. Second, given that monopoles may survive in 

reasonable numbers in a stellar core, we investigate their effects on the structure 

of the star. 

The paper is organized as follows. In 8 II, we discuss the capture of mono- 

poles by main sequence stars. A qualitative estimate of the number of monopoles 

captured is confirmed by numerical integration of the equations of motion. The 

numerical results are summarized in Figs.2 and 3 and Tables II and RI. In $ III, 

we describe the monopole distribution in stars for different support mechanisms. 

In Sec.IV we discuss the interactions of monopoles in stars, particularly the gen- 

eration of energy by m annihilation and monopole-catalyzed nucleon decay. In 

Sec.V we give a perturbative treatment of the effects of monopoles ou stellar 
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structure, with particular attention to changes in central temperature, luminos- 

ity, radiative stability, and neutrino emission. In 5 Vl we derive a criterion on the 

magnetic field strength and geometry needed to eject monopoles from stars and 

discuss the result in the context of the theory and observations of stellar Eelds. A 

summary and our conclusions follow in $ VII. 

We establish our notation here for reference. We use cgs units throughout, 

with the exception that we quote the monopole mass in GeV/c2. Most quantities 

wiU be expressed in terms of their fiducial values: the monopole mass m = 

m,s 1Or6 GeV/c2 = mrs 1.77X10” gm, its charge g = 69e(g/gn) in units of the 

Dirac charge gn; its Eux in units of the Parker flux 

FM = F-,, lo-” cmv2 set-r sr -I, and its velocity & = v&c = palO4 in units 

of the galactic virial velocity. NM denotes the total number of monopoles in the 

star, nM the monopole number density, and rm the radius of the monopole core. 

The subscript n (e.g. pn, v, ) refers to nucleons. The star’s central density and 

temperature are pc = 106 prr,r,gm cm4 and T, = 10’T~ K. 

II. Capture on the Main Sequence 

During the main sequence (MS) phase of stellar evolution, stars derive their 

energy from thermonuclear burning of hydrogen to helium. Stars on the main 

sequence range in mass from about 0.08 M, to 100 A&, and are divided into two 

categories: upper (M 2 1.2 &) and lower (M 2 1.2 &) main sequence. Because 

of the higher central temperatures in upper MS stars, the carbon-nitrogen-oxygen 

(CNO) cycle provides a substantial fraction of the nuclear energy release. This 

energy source is extremely centrally concentrated and gives rise in upper MS stars 

to a convective core surrounded by a radiative envelope. The temperatures in 

lower MS stars are lower, and the proton-proton (p-p) cycle serves as the primary 



energy source. These stars have radiative cores with convective envelopes. 

The approximate scaling of various stellar parameters with increasing mass 

M of the star can be expressed fairly simply: luminosity is given by L/Lo fi 

WI% I=‘, where n varies (3 < n < 5) somewhat across the MS, the stellar radius 

R/h N (M/e)O”, central temperature T, - M’13, escape velocity from the 

star vCM = (2GM/R)‘/* - Ml/‘, and lifetime on the main sequence r, N 

13~ 10’ (M/e )‘-a yr. More precise values of these quantities calculated from 

detailed stellar models are given in Table I. (For further discussion of the MS 

stage of stellar evolution, see, e.g., Chandrasekhar 1939, Clayton 1968, 

Schwarzschild 1957.) 

Magnetic monopoles typically move through the galaxy with the virial velo- 

city (v~ % lo%), or slightly faster if they have been accelerated by the galactic 

magnetic field (Turner, Pnrker, and Elogdan 1982), vhf e 3X104c m,s-‘/2 (for 

field strength % 3x10-s Gauss and coherence length a 300~~). As a monopole 

passes through a MS star it loses energy. If it loses all its initial kinetic energy 

(i.e., its energy infinitely far from the star), it is captured by the star. Since the 

energy loss increases with decreasing impact parameter, the number of monopoles 

captured by a MS star exposed to a monopole flux F for a time r = r~s is just 

the number incident upon the star with surface impact parameter less than some 

critical value, beet: 

where v, is the monopole velocity far from the star. The factor 

1 + (v,,,/v,)* = 1 + 2GM/Rv, ' is just the ratio of the gravitational capture 

area to the geometric cross section of the star. [All quoted impact parameters 

refer to values at the surface, not at infinity; the critical impact parameter at 

inEnity is b,zt = [l + (v,,/v,)~ ‘1’ b,rit.] 
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Monopoles moving through matter lose energy via several mechanisms: (i) 

electronic interactions; (ii) hadronic interactions; (iii) atomic transitions they 

induce between Zeeman-split levels (Drell, etal. 1983); (iv) direct ionization. 

Tarle’and Ahlen (1983) (see also Martem’yanov and Khakimov 1972, Hamilton 

and Sarazin 1983, and Meyer-Vernet 1985) have calculated the energy loss rate 

for a monopole passing through a non-degenerate electron gas and End it to be 

dE = 4.66 
dx (2.2) 

where &,b M 3.35 degrees is the minimum scattering angle (Cf. 

Clayton 5 2.3,3.4), X, is the hydrogen mass fraction, Tr is the temperature in 

units of IO’K, p is the density in gm cmq, z is the number average atomic 

charge, ,9 = v&c is the instantaneous monopole velocity, and in our range of 

interest F = C = 1. Nuclear stopping power comributes at about the 5% level 

and has been included below. 

The energy loss in Eqn(2.2) is due to close elastic encounters and was cut off 

at a distance from the monopole comparable to the Debye length An; since elec- 

tric charge screening has no magnetic analogue, one might expect collective 

plasma excitations to enhance the energy loss considerably (Hamilton and Sarazin 

1984). However, Meyer-Vernet (1985) and Tarle (1985) have argued convincingly 

that such coherent effects are destroyed by thermal scattering of the electrons. 

An electron plasma is characterized by the dimensionless plasma parameter 

jj G l/n,Xi, where n, is the electron density (i.e., l/g is the number of electrons 
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in a sphere with the Debye radius). The ratio of the electron Coulomb scattering 

frequency tom the plasma frequency wo/wr - g. In many plasmas, % << 1 and 

one can treat collision effects by a perturbative expansion in g. In a stellar inte- 

rior, however, it is easy to show that g - 1, and the colliiionless approximation 

fails. 

If the monopole is electrically charged (a dyon) or has previously picked up a 

nucleon (Bracci and Fiorentini 1984), the energy loss will be enhanced; in the rest 

of this paper, we shall focus on monopoles which are non-dyonic and which 

catalyze nucleon decay, so, modulo the subdominant mechanisms (ii),@), and 

(iv), Eqn.(2.2) represents a reliable estimate of the energy loss rate. At the very 

least, it represents a lower bound to the energy loss rate. 

a) Approximate Analysis 

With a simple approximation to Eqn.2.2, we can obtain an order of magni- 

tude estimate for the number NM of monopoles captured by main sequence stars 

and understand its dependence on stellar mass. We focus on the range 2% 

< M < 10% over which the scaling of stellar parameters (noted above) is reli- 

able. In this interval, Table I shows that 7~s - M”, and for monopole velocity 

v, ( v,, ( - 10%) Eqn.2.1 gives 

NM M 3x1025 I!?$~ I&-]““F,s. (2.3) 

We now show that the ratio (b,i,/R)*, the fraction of incident monopoles 

captured, has no monotonic dependence on steUar mass. A rough approximation 

to Eqn.(2.2) gives dE/dx 2: IOpa(g/gn)* GeV/cm. For a monopole that is margi- 

nally captured, veM = (2GM/R)‘/* is a typical speed on its trajectory inside the 

star. Neglecting the curvature of the interior trajectory, a monopole incident at 
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surface impact parameter bcrit traverses an interior distance Ax N 

2R 11 - (b,ricP) * ‘r 1 . Since most of the energy loss occurs where the trajectory 

is closest to the center of the star, we take p(r) N p(b,J = pCf(b,&R) in the 

expression above, where pc is the central density, so the total energy loss is 

AE = 2Op,f (~]~(~GMR)‘~*[~-(~~,~~/R)*]“*~~]*G~V (2.4) 

Since density profiles of zero-age main sequence (ZAMS) stars of different masses 

appear rather similar to each other (e.g., Schwarzschild 1958, p.251), to our order 

of~approximation we assume the profile function f(r/R) is independent of M. With 

Eqn.2.4, the condition for capture, AE 2 mv$,/2 = SXlOsm,s~$ GeV, gives an 

implicit expression for b&R, 

f 1% ] [l - (b&t)*] “* 
-2 

% 2.5 X 10*m~B~~cp;‘(2GMR)~‘~2 c I I 
(2.5) 

Since p N M/R3 and R N @s, th e right hand side of Rqn.2.5 is independent of 

M, i.e., b&R is a function only of m, B,, and g/gn. Inspection of Table R 

shows that this scaling result is borne out by our numerical analysis. 

From Eqns.2.3 and 2.5, the expected number of monopoles captured Nhi N 

Ma.‘. In the mass range 2.8-10 &, a Et to the numerical results shown in Figs. 

2 and 3 indeed indicates an approximate power law with exponent N -0.4 . The 

qualitatively different behavior of NM for M 5 2% and M 2 10% reflects 

changes in the scaling behavior of 7~s with M and changes in density profile in 

these regions. 

The fastest monopole that a star can capture obviously passes through the 

stellar center on a straight trajectory; in this case b=O and, since f(O)=1 by 

definition, the left hand side of Eqn.2.5 is unity. The velocity of the fastest 
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monopole stopped is then 

p,“” m 7x 1O-s $ m;-,‘/* I I (2.6) 

again independent of M. This is in good agreement with the result shown in 

Table III (especially the independence of M). This shows that a significant frac- 

tion of monopoles with the galactic virial velocity (& - lOA ) will be captured 

if m ( gxIO”(g/gn) GeV. Eqn.2.6 can be expressed more transparently ss a 

condition on the kinetic energy 

I I 
2 

EzU M 2.4X 10” $ GeV . (2.7) 

b) Numerical Results 

In order to follow the trajectory of the monopole through the star, we 

numerically integrated the following equations of motion: 

g=- yx-ip-%I 

j;=- “yy-+!&q (2.8b) 

where x and y are Cartesian coordinates centered on the star, dE/dx is given by 

Eqn.(2.2) with the nuclear corrections included, the instantaneous velocity of the 

monopole v = (;* + y*)‘/*, and M(r) represents the stellar mass inside a radius r. 

The initial conditions at the stellar surface were chosen to be: y(0) = b, = sur- 

face impact parameter, x(0) = R(l - (b,/R)*)‘/*, X(0) = -v8 = impact velocity, 

f(o) = 0, v, = [ v: + (2GM/R) I’/*, and, as noted earlier, b, = (v,/v,)b,, 

where voo and b, are themonopole velocity and impact parameter at infinity 

(see Fig.1). The values of M(r), p(r), T(r), and Xn(r) (where 9 = x2 + y*) are 
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interpolated from the ZAMS stellar structure models of Stromgren (1965) 

(reprinted in Clayton (less)), Iben,Jr. (1965,1966) (reprinted in Novotny (1973)), 

and Woosley (1983) (See Table I). Those monopoles that lose all their initial 

kinetic energy enroute through the star are captured. In Table II we list the 

maximum surface impact parameter bcir at which monopoles are stopped for 

various stellar masses (0.6 - 30 e ), monopole masses (10” - 10” GeV), and 

monopole velocities far from the star (lOA - 10-l c). We also include results for 

monopoles of 2 units of Dirac charge, g = 2go. Two models with different com- 

positions (X, = 0.6,0.7) were used in the 7% case; Table II shows the insensi- 

tivity of the capture results to this variation. fn Figures 2 and 3 we have plotted 

the number of monopoles captured over the MS lifetime as a function of stellar 

mass, for monopofe maSses (lOI - 1018) GeV, monopole charge g = (1 , 2)gn, and 

VCO = 10%. The error bars in Figure 2 indicate the spread in the number cap- 

tured between partially evolved and ZAMS models; again, the difierences are 

small. In Table ITf, we list the velocities of the fastest monopoles stopped for 

different monopole masses and charges. 

ID. The Monopole Distribution in Stars 

To determine the fate of monopoles captured in stars and to examine their 

effects on stellar structure, we need to estimate where they congregate in stars. 

As we will see in this section, monopoles are concentrated deep in the stellar core, - 
most probably between ld to 10’ cm of the center. 

Once stopped within a star, monopoles faU to the center, their motion at the 

same time being damped by the electron drag force F, = dE/dx N 

lOpa GeV/cm (approximating &n.(2.2)) on a timescale t, = 2mMvhJFd 21 

7 X 10’ plm-’ ml6 sec. Since the capture and damping times are much shorter 
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than other stellar timescales of interest, we can treat the monopole configuration 

inside the st~ar as approximately static. 

We assume throughout that monopoles never dominate the central mass 

density of the star, i.e., their number density nM is 1~~s than the critical value 

crit _ PC n, -- 
mh4 

= 5.6 X lOoploo mrs-i cmJ = 4.8X 10’ mG* (M/M&“-* cm3 

(3-I) 

In the next section, we will argue for the plausibility of this condition, which 

justiEes the perturbative approach to the effect of monopoles on stellar structure 

to be used throughout. (See Fry and Fuller 1984 for a discussion of monopole 

stars.) Here we use it to determine the monopole distribution to good approxima- 

tion without considering the higher order effect of the small monopole contamina- 

tion on the star itself. 

The monopole distribution will be supported against gravity by: a) pressure 

gradients, b) magnetic fields, and in some cases possibly c) large-scale convective 

motion. We discuss these support mechanisms in turn. 

a) Pressure Support 

In the absence of convection and magnetic fields, monopoles reach kinetic 

equilibrium with the stellar plasma at low thermal speeds, vlk N (3kT,/mM)‘/* 2: 

0.3(T7/m,s)‘/*cm set-‘, so the pressure of a heavy monopole gas is weak. To 

satisfy the condition of hydrostatic equilibrium, a self-supported monopole distri- 

bution must be conEned to a region where its thermal energy can balance its 

gravitational potential energy, i.e., within a characteristic ‘thermal’ radius 
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(3.2) 

from the center of the star (Harvey 1984). Although monopoles interact with the 

gas and radiation in the star (the exchange of energy with which allows them to 

be captured), they rapidly diffuse to the stellar center: no couplings or eon- 

straints, such as electric charge neutrality, can buoy them up. Monopoles sup- 

ported by thermal pressure alone will cluster at the center of stars. 

b) Local Magnetic Fields 

Although their magnitude and geometry are largely unknown, the interior 

magnetic Eelds of stars are certain to affect the monopole distribution, for it is 

unlikely that the stellar core is completely field-free. Magnetic fields will act to 

disperse the monopole population, to push it out of thermal equilibrium with the 

star, and to separate the monopole and antimonopole populations, at least 

locally. One might conjecture that hidden stellar Eelds may be strong enough to 

eject monopoles from stars completely, rendering bootless the rest of our study. 

Here, we estimate the field strengths required for local km separation. In $VI, 

we investigate large-scale fields and argue that complete ejection is unlikely in 

the majority of stars. 

To study small-scale effects, we consider the simple case of a uniform axial 

Eeld B or flux tube passing through the stellar center. (This idealized geometry 

should give a reasonable approximation over small enough distances, even for 

tangled fields.) Monopoles and antimonopoles are pushed toward opposite poles 

of the tube against the forces of gravity and Coulomb attraction. Assuming a 

Eat density profile (p(r) N p,) at small radii and an equal number N of monopoles 

and antimonopoles, the M and m distributions will be separated by an average 

distance 2r, given by 



(3.3) 

where we have ignored the small pressure force ((a) above). This cubic equation 

will in general have two solutions for positive rm, the smaller one (r-) where the B 

Eeld roughly balances the Coulomb attraction, the larger one (r+) where gB 

approximately balances gravity. The stable solution is 

rm + - 7 x 10” Bloo plmV’ m;a’ I I -EL cm 
gD 

(3.4a) 

where B = lOOB,, Gauss,~ and we have ignored the Coulomb term. This solu- 

tion becomes unstable when the two positive roots r* become degenerate, which 

occurs at a minimum critical Eeld strength 

B,,,i,,=380Gauss[I$ ‘kE?r, where the factor in brackets is of 

order one for a Parker flux of superheavy monopoles (recall Figf, which shows 

N-IO*’ F-J. An internal Eeld of several hundred gauss can separate the M and 

m distributions to distances of order lo7 cm and, ss we shall see, prevent m 

annihilation for F-r, s 1. For a small flux F 5 lo-= cm-* sr-’ s-’ 1: lo-‘F-,,, a 

Eeld of only - 1 Gauss can stabilize the M’s and a’s at r,’ - 10’ cm, suRicient 

to freeze out m annihilation. Note that we have ignored the finite radius d, of 

the separated M and m distributions due to Coulomb repulsion within each dis- 

tribution; in the limit d, << rz, we find W 1 1 
‘P 

d, = M lo7 cm N 

Q~Gp,w 
I I 

‘13 
iiF 

pidd3 m,-,‘P A I I 
*/s 

8D 
(3.4b) 

and one can show that d, 5 r,’ for B 2 Bmin . Thus the separated populations 

wiU not overlap in general. It is also easy to check that the magnetic Eeld due to 

the m dipole moment is negligible at the stellar surface. 
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For these estimates to be consistent, we should check that the coherence 

length of the field in the stellar interior is at least = large as r,‘. The decay time 

for a field of characteristic length 1 is rd = 4?h71*/c2, where the plasma conduc- 

tivity Q 2: 2X 10”Is/* se@. For internal temperature T, - 10’ K, rd is longer 

than a typical stellar lifetime - 10s years only for fields with coherence length 1 

2 10’ cm. (For very massive stars, this number will be smaller by an order of 

magnitude or so.) Thus, Eqn.(3.4) will be a reliable estimate as long as r,’ s 

10’ cm, i.e., for field strengths B s 10 kG . (In this subsection, we are assuming 

that the core is radiatively stable, so we only consider primordial magnetic fields, 

which have the long timescales above.) In this discussion, we have neglected the 

instability of the field conEguration to buoyancy and diEusion; it is conceivable 

that these effects could leave the central region relatively field-free for at least 

some time periods. 

c) Convective Support 

As pointed out in $JI, upper main sequence stars (M > 1.2%) are generally 

believed to have convective cores. In this case, monopoles can be ‘mixed’ over a 

volume of radius r cOn>>rtb due to the drag force exerted by rising bulk fluid ele- 

ments. Following Schwarzschild (1957), a small superadiabatic temperature gra- 

dient leads to an average convective velocity Yecon= 3X lO’(M& )‘I* cm/set. 

The drag force of a rising fluid with this velocity on a stationary monopole, 

dB/dx 1: 10&a p (g/gu)* GeV/cm, overpowers the gravitational force F, N 

- $Gprmk, out to a radius 

rcon rr3.2x105[$-]‘m,s-1 [J-]‘cm. (3.5) 



Even in lower main-sequence stars, the energy generated by monopole- 

catalyzed nucleon decay or m annihilations may be high enough in some cases 

to induce convection in a small core; we will return to this possibility in $V. 

[There we will also address the question of whether dissipative effects (conduction 

and viscosity) prevent convection from penetrating to the core, possibly nullifying 

this support mechanism.& 

IV. Interactions of Monopoles In Stars 

Given the monopole distribution as a function of support mechanism out- 

lined above, we can ask how this population evolves over the life of the star. In 

this section, we consider m annihilation and the generation of energy by vari- 

ous processes involving monopoles (catalysis of nucleon decay and annihilation). 

We will also End the conditions necessary for the validity of the perturbative cri- 

terion nM < n@ of Qn.3.1 . 

a) Annihilation 

The rates for monopole-antimonopole annihilation have been given by Dicus, 

Page and Teplitz (1982); since the thermal monopole velocity Bth << 0514 (where 

o = l/137), the relevant 2- and 3-body quantum recombination cross-sections 

are 

(uv)* = 253-5/2~ mG2g6vfi1 (6 c)-*c-* In [gJ/*(li c)~/‘/(v~/c)] 

= 1.2~ 105’ rn$* T{‘/* (g/gn)’ cm3 set-’ (4.1) 
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(uv)~ = nM rnr$* oJ (kT)-sl* (ii c)’ (4.2) 

- 
= 8.6 X 10-?ik, m,$* Tfs/* ems se8 

where we have used v, = vu, N (3kT/m#*, the logarithm in Eqn.4.1 was 

evaluated at Tr = m,s = g/gD = 1, and the monopole number density 

nM = iik,, cmJ. From Eqns.4.1 and 4.2, the 3-body rate dominates for 
. . 

iiMm,sTrA > 1.4X10A; since, in practice, anmhrlation is relevant only if 

iik, >> 1 (see below), one can show that &body recombination is the most 

important annihilation mechanism for rnM 2 10” GeV/c* (using T, < lo* K for 

all stars on the main sequence). That is, when annihilation is important, the 3- 

body rate dominates.(This is not true in the very advanced stages of stellar eve- 

lution or in neutron stars.) 

l.Main Sequence 

If annihilation occurs, the monopole population in the star reaches a plateau 

at a value Nr;19, where the annihilation and accretion rates balance, 

dNk, Nh;p” 
-= 

dt 
- - Nz n# (uv)s = 0 

%4s 
(4.3) 

Here, N# is the total number of monopoles captured over the main sequence 

lifetime rMMs (see Figs.2 and 3). Using the approximate expression (2.3) for Nr;iP, 

assuming for simplicity that the monopoles are uniformly distributed inside a 

radius rm = ir, cm, and substituting Eqn.4.2 into Eqn.4.3 gives the equilibrium 

number density of monopoles 

n1;19 = 1.2 X lOI* cm3 yi’F$s rnrr/* (M/M& (4.4a) 



- 18- 

and a total number 

Nz = 5.2X IO’* Fz F-x3 m#* (M&) (4.4b) 

where we have defined the effective flux parameter F-r, E F-,, aj (b&t)*. In 

SIB, we estimated the radius r,,, of the monopole core for different support 

mechanisms; using Eqns.3.2,3.4a, and 3.5 in Eqn.4.4b gives 

Nl;lq X 5 x lo’* (M/M&*.* m,$* FJ/l (thermal) (4.5a) 

M 3X 10n (M/MO)*.” m#* (g/gD)* (B/lG)* F_‘I,s (magnetic) (4.5b) 

M 5X loss (M/&J8i3 rn,$* (g/gD)’ F-‘(B” (convective) (4.5c) 

These results are summarized in Figure 4. 

Note that, through the use of (2.3) we have assumed the scalings appropri- 

ate for the mass range 2% s M s 10% and that v, ( v,,. Eqn.4.2 gives the 

3-body capture rate into a m bound state; in applying it to Bqns.4.3 and 4.4, 

we have implicitly assumed that the timescale for annihilation of a bound MM 

pair is less than or of order the capture timescale. This is readily veriEed: the 

capture timescale rs - (n#uv3)-’ - 3XlO’Yi F-jzJ3 set while the annihilation 

timescale is roughly the plasma damping time for bound m orbital motion (see 

§III), td-7X10*sec. 

Annihilations are unimportant if N&s >> N#‘. For a thermally supported 

monopole distribution, comparison of Eqns.2.3 and 45a shows that annihilations 

significantly reduce the number of monopoles in the star unless F, s 

10ess cm” see-1 sr-l. Since N$ is quadratic in rm, however, any mechanism for 

dispersing monopoles strongly reduces the annihilation rate. For example, for con- 

vective support, Eqn.4.5c shows annihilations are obviated in massive stars for a 

flux a3 large as lo-” cm-* se@ sr-l . For a central magnetic Eeld of several 
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hundred Gauss, annihilations are rendered impotent for an even higher monopole 

flux. (Note that Eqn.4.5b is a conservative underestimate of N#pmas, because we 

have assumed the M’s and ms are spread over a ball of radius r,$; in f~ III, how- 

ever, we showed that the M and m distributions wiIl not overlap if B 2 B,,.) 

For future reference, it is convenient to express the above relation N# >> N# 

ss a condition on the monopole radius rm ; from Eqns. 2.3 and 4.4b this is 

r, >> rFn = 2~ 10” cm F-y: mis’/* (M/M&‘.’ . (4.6) 

2.Advanced Stellar Evolution 

In the advanced stages of stellar evolution, the core undergoes a series of 

contractions, heating up to ignite the nuclear burning of heavier elements. First 

consider the caSe of thermal support. As the density and temperature increase, 

r$ and t~hus N$ are reduced from their main sequence values. Although _a 

smaller number of monopoles survives, typically the number is reduced by no 

more than an order of magnitude. From Eqn.(3.2), rm - (T/p)‘/* and from 

Eqn.(4.2), N# - r*T’/* m - @‘f*lp. Assuming the core contracts approximately 

uniformly and adiabatically and using an ideal gas equation of state, p - Rd, T 

- R-‘, so Nh;19 - T’/*. The central temperature in these stages of stellar evolu- 

tion is generally less than - 1000 times the average main sequence central tem- 

perature, so N# is reduced by less than a factor of - 30. Eventually, the simple 

scaling approximation above breaks down; for example, during Si burning in a 

25% star (Weaver, Zimmermann, and Woosley 1978), T,i N 10’ T,, while psi 

2: lOohs , so N# is reduced by - 10’ from its main sequence value. These very 

advanced phases are so rapid, however, that the number of monopoles Nr,, does 

not have time to relax to the suddenly smaller values of N$; the actual drop in 

Nk, through the pm-collapse phase is s a factor of 1000. In addition, convection 

is expected to set in during the advanced burning stages, and this will keep Nh;q 
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as large as NC”. 

Since the behavior of central magnetic fields during advanced evolution is 

not well understood, it is not obvious what will happen to magnetic Eeld support 

during core contraction. In the absence of complicating factors (see below), the 

high stellar conductivity will freeze the Eeld into the Euid, and magnetic Eux 

should be conserved; then in an adiabatic contraction B - R-*, p - RJ, so B - 

p213; since B min - P *I3 as well (see 3 RI), the magnetic force remains sufficient to 

overcome gravity and the Coulomb attraction if it was initially. Also, from 

Eqns.3.4, r,’ - B/p and d, 7 p-‘f3, so d,/rz - %rp2/’ - const. Thus, if 

d, < r,’ initially, it remains so, and annihilations will still be prevented by the 

magnetic Eeld. In the collapse to an object of neutron star dimensions (R - 1Oa 

cm), the initial separating field of several hundred gauss ( 3 RI) is amplified to - 

lO’*G, a typical value for observed pulsar fields. The actual evolution of the Eeld 

is likely to be much more complicated than this (Ruderman and Sutherland 1873, 

Levy and Rose 1974a,b); in particular, more or less independently of the initial 

main sequence field, the convective motions set up in the advanced core may gen- 

erate a strong central magnetic field B - lo* - 1O’G (which subsequently col- 

lapses to - lO’*G) by dynamo action. 

Now consider the fate of captured monopoles upon collapse of the core to a 

neutron star. (The case of white dwarfs is discussed by Freese 1984.) In the 

absence of a central magnetic Eeld B, 2 10sG, when convection ceases annihila- 

tion will catastrophically reduce the surviving population (Harvey 1984). On the 

other hand, if a large central Eeld has been built up by a late-stage dynamo or by 

collapse amplification of an initial seed Eeld, annihilations will be prevented in 

the usual way. This simple picture is complicated by the uncertainties regarding 

the interior structure of neutron stars. For example, in most models, the degen- 

erate protons in the core pair to form a Type R superconductor; magnetic fields 
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must thread the superconductor in thin vortex tubes. If a large field is present in 

the core before it goes superconducting, monopoles can disperse into the tubes; 

M’s and M’s will occasionally annihilate if they End themselves in the same tube, 

but a large fraction will survive. Their subsequent evoution is discussed by Har- 

vey (1984). If the core is superconducting but without a large field, there are 

three possibilities: i) superconductivity (SC) OCCURS well after the end of convec- 

tion, in which case annihilation destroys the population in the meantime; ii) SC 

occurs quickly and nucleates from the center outward, expelling monopoles from 

the core or surrounding them with flux tubes; iii) SC occurs quickly, nucleating 

inward. In the last case, since the majority of monopoles have Eeld lines which 

penetrate the surface of the star and since 6~ lines cannot be broken, monopoles 

will also presumably form into their own flux tubes, thereby escaping annihila- 

tion. 

b) Self-Consistency of the Perturbative Treatment 

We can now verify the claim of 5 III that the condition prnDn < P,,“~ is very 

likely to hold; this requires min[n#‘,n~q] < n$$ = 5.6XlOs rnz ploo crna. 

From Eqn.4.6, for rm > r? we have r@’ < nz; in this case, 

n$P W N$P/ri < Ngr/(r$“‘)3 NN 10’ cm4 (independent of FM, where we have 

taken N$r N 10sr’ F-,s ), which is less than n$ 8s long as m,,/~lr,s 2 5.6X10’. 

Thus, Fqn.3.1 could only he violated for r, < r,“” ,i.e., annihilations always set 

in before monopoles reach the critical density n,$“‘. To satisfy (3.1) we need only 

impose nz < n$t, which becomes, from (4.4a), 

r, > r$ x 2x10~ cm F!# m#* (M/M&* (4.7) 

For F-,s s I, Eqns.3.4 and 3.5 show that this condition is easily satisfied if con- 
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vection or magnetic Eelds are present. For a thermal monopole distribution, 

Eqns.3.2 and 4.6 imply that the ratio 

ttl rm 7 cnt = 0.4 F-‘/l rn,$‘l’ (M/M&*/* 
rm 

is typically larger than unity for FM s lo-” cm-* see-’ sr-‘. Thus rather large 

monopole Euxes, which appear to be ruled out on both theoretical and experimen- 

tal grounds (see 5 I and references therein), would be needed for a critical mono- 

pole density. 

In the unlikely caSe that nM > n$“, straightforward arguments (Seckel 

1882) indicate that an approximately isothermal monopole-dominated core is 

unstable to gravitational collapse. (The virial equation for the monopole-nucleon 

gravitational system is a cubic, so it displays the ‘cusp’ catastrophe.) As a stellar 

core approaches monopole domination, however, it will relax to a stable nucleon- 

dominated conEguration. Assuming a thermally supported nucleon-dominated 

system, Eqns.3.1,3.2, and 4.4a indicate that the ratio P = n&+E;iit - 

T,5J2/ri,h,hp,,, - T,/p,‘,!2. Under a uniform contraction of the ‘core’ radius from Ri 

to R,, T - R-‘, -3 p-R , and this ratio decreases by 

PI/Pi = (TdTil (PrLJP,‘,J”* = @WJ”*~ where we have assumed the nucleons 

form zn ideal non-degenerate gas. As nM approaches ngit, gravitational contrac- 

tion of the monopole-nucleon core reduces the monopole density relative to the 

critical density, rendering the system marginally stable against further collapse; 

for nM near n$~, we expect the star to relax by slow secular mini-core contrac- 

tion instead of runaway collapse. There is no diiIiculty with competing timescales 

here: for nM - r&r, annihilations keep nM from growing very fast, so a slow con- 

traction can indeed keep nr,, below n$‘. 
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c) Energy Generation 

Monopoles at the centers of stars will act as a source of energy through then 

annihilations and, possibly, through their catalysis of nucleon decay. [ We neglect 

here the possibility of M catalysis of fusion (Bracci and Fiorentini 1984) and 

other effects connected with the binding of monopoles to nuclei (Lipkin 1983) 

because we assume monopoles catalyze baryon decay with a strong interaction 

cross section.] When monopoles and antimonopoles annihilate, at the rate 

dnhi/dt = -n&uv)3, their rest energy is thermalized, heating the core at a rate 

f mn -N -(dp,/dt)l/p, = m~c*n$rv)s /p, per gram of stellar material. [ c is the 

energy released per unit maSs per second.] It is clear that cmn will only be appre 

ciable in the regime where annihilations are important, that is, for r, < r:” and 

nM = n$. In this case, Eqns.4.2 and 4.4a give 

r= = 3x lom erg 
gm-sec 

-2 ml, F-,s (M/M&*.’ 

Since it depends strongly on ym, the annihilation heat has a wide range: L, - 0 

for r m 2 r,uln ; in the convective case, from Eqns. 3.5 and 4.9, 62: N 

10’ rn:s e,s (g/g&’ (M/e )-‘/‘O erg/gm-set ; and for thermally supported 

monopoles c & N 3.8X 10” rn:i* 17;-:s (M&)6/‘o erg/gm-set from Eqn.3.2 . By 

comparison, typical core nuclear energy generation rates are cpp N 10plssT,’ 

erg/gm-set (for 1.1 s T, s 1.7 ) and toNo N 8plwT/” erg/gm-set (for 2.1 < T, 

< 3.1) for the proton-proton and CNO cycles (e.g., Schwarzschild 1957). (The 

effects on the star of the extra monopole heat sources will be discussed in the 

next section.) 

As discussed in the Introduction, it is thought that grand unified monopoles 

catalyze the decay of nucleons with a cross-section a - 10ess cm* characteristic 

of the strong interactions. Since the energy liberated per decay is roughly the 
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nucleon rest energy m,c*, and the central mass density pc N pn N monn (where 

n,, is the nucleon number density), the power per unit m=s produced by 

catalyzed decay is c cat N ne,vc*, where v N va is a typical monopole-nucleon 

relative velocity. At the stellar center, the average nucleon velocity va N 

(3kT,/m,)‘/* 2: 10JTrr/*c. Arafune and Fukugita (1963) have shown that, for a 

relative velocity B - lOa in Hydrogen, the catalysis cross-section is enhanced by 

a factor F(p) N 1.7X102(~/10-5)-’ due to the angular momentum carried in the 

electromagnetic Eeld of the monopole-nucleus system. (Note that it is possible 

that for v N 10% there are strong interaction harriers which might depress the 

rate.) Since it is usually assumed that the cross-section otherwise scales with velo 

city as a, = F/la, where F = u-&P cm*, we have 

u$ = F F(B) = 1.7 X lO-*su~~T~‘/* cm*. 

We evaluate fCal in the two cases of (I) weak (nM < nl;lq , rm > r,UI”) and 

(II) strong annihilations (nM = n$). In the Erst case, using nM N 3Nr;PP/4srz 

with NEjpP given by (2.3) 

E$l = 4.3 x 103s erg 
P-s= 

ri,” a-= Fle (M/M&‘.’ 

In the strong annihilation regime, Eqn.4.4a gives 

c,($ = 7.4x 10’7 erg 
gm-sec 

F;’ ueB F-y: m/d6 (M/M&O.O 

(4.10a) 

(4.10b) 

and we note that, in general, &) > c,rfl. As before, we can give the catalysis 

heat for diaerent monopole radii r,: from Eqn.4.lOa, catalysis is negligible (rest 

- 0 ) for rm 2 2X10” u-l& F-r# (M&)-*I” cm ; from Eqns.3.2 and 4.IOb, a 

<thermal monopole population produces ~$2 N 6X 10” rnrsd3 F-r!: (M/G 

)3/‘oIu-m erg/gm-set ; from Eqns. 3.5 and 4.10b, in the presence of convection the 
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rate is ciz fz: 10 ** F-2 rn$3 u+3 erg/gm-set ; and for the case of magnetic Eeld 

support, Equs. 3.4b and 4.10a give ~$3 N ?XlO3 ml6 (g/g&* u-28 (M&)-l-’ 

erg/gm-sec. 

The preceding analysis shows that, under general conditions, the local energy 

generation due to annihilation and catalysis can overwhelm the ordinary nuclear 

rates. In the neighborhood of the small region occupied by monopoles, this will 

certainly affect the structure of the star (see $ V). As far as external observers are 

concerned, however, the contribution of these processes to the total luminosity of 

the star is generally negligible because monopoles are confined to such a small 

region ( on a stellar scale, they essentially form a point source). To put an upper 

limit on the luminosity contributed by monopoles, we assume the structure of the 

star does not locally adjust to reduce the large monopole heating gradient (e.g., 

by convection). If the energy generated is efficiently thermalized, then the annihi- 

lation luminosity is, using Eqn.4.9, 

L 4 
mn M- 3 Tr;pcc;& = 1023 2 ~-16mlo (M/M&*/' (4.11) 

independent of rm (and thus of support mechanism). This is negligible compared 

to the luminosity of even the faintest stars ( e.g., L N 5X10so erg set-* for M = 

O.lhb , Allen 1973, p. 20Q ). From Eqns.4.10, L$ii 2 L,E) (even though 

@ 1 &, so the maximum power output due to monopole catalysis of nucleon 

decay is 

L e.t = 1.4x1033 2 F-,, cn (M/M&’ (4.12) 

Since stars with mass M ;S 0.086 are thought to be too cool for nuclear reac- 

tions to occur, Eqn.4.12 shows that catalysis also makes no observable contribu- 
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tion to the luminosity of stars which shine if FM 5 Wss cm-* see-’ sr-*. The 

effects of monopole luminosity in degenerate black dwarfs, e.g., Jupiter, deserve 

further study (Turner 1963b); since their structure is rather different from main 

sequence stars, however, we do not consider them in this paper. 

V. Effects of Monopoles on Stellar Structure 

In the previous sections, we treated the behavior of monopolee in a fixed 

background star. Here, we consider the perturhative effects of monopoles on the 

star itself, and conclude that the star’s structure is, on the whole, negligibly 

changed. 

a) Upper Main Sequence 

As we saw in 5 IIIc, the convection occuring in the core of a massive star (M 

2 1.2%) affects the monopole distribution; ss a result, convection will also alter 

the effects of the monopoles on the star. There is some question, however, about 

whether convection in an upper MS star will penetrate to the stellar center. 

Although Schwarzschild’s criterion for convective stability, 

DC+%+ [l-+]+~<o (5.1) 

i.e., that the temperature gradient be subadiabatic, is violated, this is not a 

suficient condition for convection to actually occur. (Here 7 is the usual ratio of 

specific heats. In Eqn.5.1, we have ignored the effects of an impressed strong mag- 

netic field, which tends to suppress convection.) In addition, the superadiabatic 

gradient D must be large enough to overcome the effects of viscosity and thermal 
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conduction, which dissipate the bulk kinetic energy of convecting fluid elements. 

If we defines the Rayleigh number for a fluid layer of thickness r, 

(5.2) 

then convection generally sets in for R 2 O(10’) s Rcct (Chandrasekhar 1961). 

Consider a 5& star (Table I): near the center, the gravitational acceleration g 

2: (4tr/3)Gp,r, and the central density p c N 21 gm cm-$ the thermometric con- 

ductivity x = K/PC, = (4acTj/3Kp:cp) N 4X10’ cm* see-‘, where K is the 

ordinary coefficient of heat conduction, K is the radiative opacity, cp is the 

specific heat at constant pressure, a is the Stefan-Doltzmann constant; the 

superadiabatic gradient is typically D 1: lo-‘s cm-‘; the radiative viscosity vr N 

(aT:/4cxp:) N 85 cm* se& ; the electron viscosity V, 2: n,kT,r N 

3.2 cm* set-‘, where P is the mean free time (relaxation time) for electron-ion col- 

lisions in a screened plasma. Putting this aU into Eqn.5.2 gives a condition on the 

radius 

(5.3) 

(Note if we use instead the turbulent eddy viscosity (Ledoux 19743, r,,, may be 

higher by 1 or 2 orders of magnitude, but it is insensitive to small changes in the 

other parameters.) This might be taken to imply the existence of a radiative core 

of size - 10’ cm in upp=vfS stars (surrounded by a transition layer of laminar 

convection), in which caSe convection would be irrelevant to the distribution and 

effects of monopoles (since r,,;$ 2 rm). On physical grounds, however, this infer- 

ence from Eqn.5.3 is unjustiEed. Since large-scale turbulent motions are taking 

place over scales - 10’ cm, they will likely overshoot into this hypothetical tiny 
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quiescent core (see,e.g., Shaviv and Salpeter 1973). (Even in the absence of tur- 

bulent overshoot, the most unstable mode in the supposed laminar region would 

have non-zero flow velocity in the limit r 4 0 (Chandrssekhar 1961).) We con- 

clude that convection permeates the cores of upper MS stars. 

In $ IIIc, we saw that monopoles supported by convection are spread over a 

region of size - 10r’m;b’ cm; in $ IV, we showed that the local energy generated 

by convecting monopoles could be large, t$z N 10’ rn; F-1, erg gm-’ see-’ and 

rccay N 10’2 F-,6 m$’ erg gm-’ se@, but that the total luminosity is a negligible 

fraction of the stellar luminosity. In addition, despite the fact that rmO,, >> t,,,, 

we now show tbat even the local effects on the structure of the star are negligible. 

We consider the stellar model discussed by Chandrasekhar (193Q,ch.9,fj 4), in 

which the energy generation is completely conEned to a convective core occupy- 

ing a fraction 0.17 of the stellar radius. From the condition of hydrostatic equili- 

brium, Chandrasekhar shows that the total luminosity L - T,‘.‘/p: (see hi 

Eqn.2QO ). Since radiation pressure is ignored in this model, the polytropic and 

ideal gas equations of state are pc - p: - pcT,, so that pc - T:/(v-‘) - T:/*, 

where we have used 7 = S/3 for adiabatic convection. Using this above gives L 

- T:5. Now consider the energy generation itsell: from,e.g., Schwarzschild 

(1957) Eqn.lO.15, the CNO rate can be written cnuc N pT” with typically u - 

16; assuming a temperature profile T(r) = T, f(r/R) gives 

0.17R 
L= I 4z?pcdr = g(R) Tl+’ 

0 
(5.4) 

where aU the radial dependence has been absorbed into g. Equating the two 

exprgsions for the luminosity, we have gTc”+3 = dT,‘5 G L, (where d is an 

irrelevant proportionality constant). In the presence of the monopole source 

L man = aL, ( o << l), this is modilied to gT,“” + oL, = d?vc4.5 c c, so the 
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temperature and luminosity perturbations 61‘, = T, - T, , 6L = c - L0 are, to 

first order, 

n, -0 -= 
T, u - 1.5 (5.5) 

b-L fle 
- = 4.5 7 
L c 

The surprising feature is that, since equilibrium demands that the total luminos- 

ity rise as only a small power of T,, the star adjusts so that the temperature and 

luminosity decrease in the presence of the monopole heat source. From Eqn.4.11, 

since L, 2 lOJo erg set-* for all stars, (I,, s L,/L, 5 LO-’ F-,s m,s , so annihi- 

lations have no effect at all. For catalysis, from $ IIIc and lVc, we have L:z 2: 

(4/3)x pc 6, GY = 10” erg set-’ FJ[i uen m$‘/‘, so Qcm s 

2 F-y: m;b”/’ a-= From Eqn.5.5, the change in central temperature 6T,/T, 2: 

-ocon/14.5 ( O.lP,s m$‘/6 uezs << 1. We conclude that monopoles have essen- 

tially no effect on an upper MS star, either globally or locally, for a Eux below 

the Parker bound. - 

b) Lower Main Sequence 

For stars with radiatively stable cores, the picture is potentially more 

interesting, but as we shall see, the effects remain small. Since monopoles gen- 

erate heat at a strong, highly localized rate, one might expect them to form a 

small convective core. To consider this, we Erst recall that the equations of stellar 

structure (assuming radiative stability) can be expanded near the center ( r - 0, 

P = PC) 85 
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M(r) w $ rSpc 

p(r) = pc - % Cp,2? 

4% L(r) F5: - 9&t, 
3 

(5.6a) 

(5.6b) 

(5.6c) 

.4s r - 0, both dT/dr and dp/dr .- r go to zero; at finite r, dT/dr N (T-T,)/r , 

dp/dr 1: (p-p,)/r, and substituting Eqns.5.6b and 5.&d into Eqn.5.1, we can 

reformulate Schwarzschild’s criterion as 

where the central opacity rcc = ICY cm2 /gm, and the central pressure 

pc = pr,lO” dyne cm-*. From 5 IV, the expressions for &, and & show that 

for a flux FM 2 lo-50 cm-* see-’ sr-r or FM 2 lOJQ ~-2s cm” se& sr-r , a thermal 

monopole distribution will violate Eqn.5.7 due to annihilations or catalysis, and 

the system is convectively unstable. Unlike the case in 5 Va, however, here if rm 

< 10’ cm, dissipative effects are more likely to play a role in suppressing convec- 

tion, because one can no longer appeal to turbulent overshoot from the region 

r > r,. We therefore consider both possibilities, convective and radiative. If the 

monopole core does convect, the results of 5 Va can be applied to show that the 

effects are small, because the Chandrasekhar model also describes the case of a 

point energy source at the center. 
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II the core is radiative (either due to dissipative elects or because t,, is 

below the limit (5.7) ), we can carry out a perturbative analysis similar to that of 

5 Va. We consider Eddington’s standard model, an n=3 (7 = 4/3) polytrope in 

which the quantities jl= ps,Jp~o~ and ~1) (where K is the opacity and r] c~ 

(L(r)/M(r))/(L/M) ) are constant. For any star in radiative equilibrium, we have 

the luminosity formula (Chandrasekhar lQ3Q) 

L = 4~cGMO - A) 
iE? 

(5.8) 

where gij is the pressure average of KV over the star. Using the Kramers opacity 

K = K;oP~.~, for the standard model we have Gj = rcicQc = ~,,rl~T~~.~. In this 

model, p - p, so that ifij - T’/* and Eqn.5.8 gives L = bT’/* (b is an arbi- 

trary constant). From here on, the argument is almost identical to 5 Va (see 

Eqns.5.4,S.S) and we only need replace the L exponent there,4.5, with 0.5, and 

use the fact that here pc - Tf ; the analogue of Eqn.5.5 in this case is 

fl, -a -= 
T, u i- 5.5 (5.Q) 

&L 1 fl, -- 
-=2 T, L 

where, as before, a = L,,,/L,. Again, the central temperature (and temperature 

gradient) drops very slightly. In this case, a can be somewhat larger than in the 

convective case, but the effect is still unobservable. From Eqn.4.12, for a O.lh& 

star, we have oCSt 2: 4x10* F -is uers, and for the pp cycle v 2: 4, so that n,/T, 

= -40 F-,, u-28, which is still negligible as long as Fl,r s lo-l8 cmm2 see-l sr-r. 

Thus, whether they convect or not, lower MS stars are not affected by 
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monopoles. [This result further reinforces the monopole flux limits based upon 

monopole-catalyzed nucleon decay, which we discussed in 5 I.] 

In Sec.lV, we saw that, for a Parker flux, a thermal monopole distribution 

can generate energy f:,h - IO” erg grn-’ set-’ while even a magnetically sup- 

ported distribution releases catalysis heat at a rate t,r’,, - 10” cress (again for 

F-‘s - 1 and B - 100 G ). These values are so large that one might consider the 

possibility of mini-explosion of the monopole core. In fact, assuming the mono- 

pole core can convect, we lay this fear to rest here by showing that the convec- 

tive velocity is always subsonic: convection is eflicient enough at carrying off 

monopole heat that a shock wave never develops. We follow the standard mixing 

length treatment of Schwarzschild (1957, 5 7); from his Eqn.7.7, the energy flux is 

H = cpp T “* (AvT)~/* ; 
I I 

(S7.7) 

where cp is the specific heat per gram, AvT = TD (D is given in Eqn.5.1) and 1 

is the mixing length. From Eqn.5.6c, near the center we have H = L/&r* N 

(1/3)p, cr; using Eqn.5.6a in (S7.7) and letting 1 - r,, we can solve for the 

superadiabatic gradient 

-l/3 

p;‘b T,‘f” r-’ (5.10) 

However, by definition, the convective energy flux is H = AvT dr cp p v ; from 

the previous expression for H above, using dr - r,/2 in this expression gives the 

convective velocity 

2 - v M -ccp 
3 

’ (AvT)-’ (5.11) 



Substituting Eqn.5.10 into Eqn.5.11, we finally get 

VW 4nG I e,T Pdfy3 = I$ Ly (5.12) 

Assuming an ideal gas equation of state for cp, 

v M 5x10’ cm set-’ T<‘/’ (L,,,,,/b)‘/s (5.13) 

The speed of sound c, = (?p/p)‘/* M 3x10’ T$* cm see-‘; since, for a sub- 

Parker flux, L,,,/Lo 5 1, we have v << c,, as was to be shown. 

c) Solar .Neutrinos 

The presence of monopoles will also alter the emission of neutrinos by stars, 

both directly, through catalysis neutrino production, and indirectly through the 

change in nuclear neutrino luminosity due to the perturbat,ion in central tempera- 

ture. As in the previous sections, the latter effect is easily seen to be unimportant: 

assuming the neutrino luminosity L, - Ten, the perturbation due to monopole 

heating is 

L” fl, -na 

Ly=T= v+c 
(5.14) 

where C = -1.5 (+5.5) in the convective (radiative) caSe (Eqns.S.S,S.lO), n - 13, 

and we saw before that o << 1. 

The direct change to due to catalysis is still just first order in the small 

quantity o but may be a larger effect. As before, we let L,, = ah, where b is 

the solar luminosity. Now define the parameter I to be the fraction of catalysis 
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reactions which result in neutrinos of energy - 30 MeV (generally by secondary 

decays: since neutrinos do not interact electromagnetically or strongly, they may 

not be produced directly in nucleon decay; see the references in 5 I) times the 

average number of such neutrinos per reaction. Since the total energy released 

per decay - m,, the luminosity in 30 MeV neutrinos is L, N la (30/1000) b 

and the neutrino flux at the earth i9 

F, = (Lze/30MeV)/4xRi = Q.2X lo* (fo) cm-* see-‘, where R, N 1.5~ 1013 cm 

is the mean earth-sun distance. The neutrino capture cross-section on s’C1 is o N 

4.6~ lOA cm* (E/MeV)3,7 2: lo-@ cm* for 30 MeV neutrinos (Bahcall 1978). The 

total capture rate is F, ozs N Q.2 x 10 -s2 fa/sec = 9.2 X 10’ (fo) SNU. Assuming 

I - 1, an observable SNU increase occurs if CY,,~ 2 lOJ. For the sun, Eqn. 4.12 

gives a,.t N 0.5F-1s u-28, so a catalysis SNU signal requires FM 4% 2 

2 x lo-*’ cm-* set-’ sr-‘; this appear to be ruled out by the catalysis neutron star 

limits. We should emphasize that this does nor amount to a flux limit, because, if 

the monopoles are only thermally supported, m annihilation will wipe out any 

observable catalysis SNU signal, even for a Parker flux (see 8 IV). (Solar neutri- 

nos from catalysis have also been discussed by Dar and Rosen 1884 and Arafune, 

Fukugita, and Yanagita 1984, but they neglected annihilations.) 

VI. Ejection by Magnetic Fields 

In this section, we ofier some estimates of the magnetic field strength and 

configuration needed to eject monopoles from stars; given the complexity and 

uncertainty of the theory of stellar magnetic fields, these numbers are necessarily 

approximate. (Since the order of magnitude estimates we make will turn out to 

be near interesting thresholds, a more accurate picture would require detailed 

numerical models of interior stellar fields, models about which there is at present 
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no consensus.) 

First, consider the case in which the dominant component of the field B 

(averaged over some coherence length) is radially outward, with magnitude 

independent of radius. (Although this field is neither divergenceless nor every- 

where continuous, it still serves as a simple model.) Monopoles accelerated from 

rest near the center of the star acquire kinetic energy at the surface 

ES = R (gB + <F,>, ) - ;(dE,dx) dx , where the gravitational force averaged 
0 

over the star <F,>n = -(l/R) y(GM(r) m/rs) dr N -4GMm/R* , and (dE/dx) 
0 

is the drag force given by Eqn.2.2. Approximating the drag integral term by 

Eqn.2.7, AE N Ez”/2 21 1.2~10” (g/go)* Gey, monopoles are ejected with 

escape velocity if E, 1 Ghlm/R , that is, for magnetic fields greater than 

B rad 
eJ =7.5x104G [cl-’ [-,s+$[c]‘] P3.1) 

(We have suppressed a weak dependence on stellar mass hf.) 

In this calculation, we have idealized capture and expulsion as a twostage 

process: initially, with B=O, gravity and drag bring monopoles to rest at the stel- 

lar center; subsequently, the magnetic field is switched on, raising the total 

potential energy at the center to U(0) > 0, and monopoles roll (with drag) along 

the combined magnetic and gravitational potential to infinity (where, by 

definition, U(oo) c 0). Physically, for a homogeneous field, the total monopole 

energy does not increase with time, so ejected monopoles are never captured in 

the first place: they simply bounce og the repulsive magnetic potential at the 

core. Taking this subtlety into account does not substantially alter the result 

(6.1) but leads us to reinterpret it IS saying that fields B - Bej reduce the max- 



imum energy EsU of captured monopoles from R 2.4X 10” GeV (see Eqn.2.7) to 

x 10” GeV (for g = gn). For example, from Eqn.2.6, for ml, = 1, thii reduces 

the maximum capt,ure velocity from M 7~10~ c to M 1.4x10Jc, close to the 

galactic virial velocity. The actual fraction of monopoles affected by the magnetic 

field clearly depends on the monopole velocity distribution at infinity. 

Although more realistic field configurations undoubtedly give diiTerent values 

for Bej, most of the added complications (e.g., finite coherence length of the field, 

incomplete flux coverage of the star, back reaction of accelerated monopoles on 

the field) lead to larger estimates for B,j; in these csses,Eqn.6.1 represents a lower 

limit. The majority of stars do not appear to have such strong global magnetic 

fields at their surfaces: generally <B(R)> ( 100 Gauss. (They may, however, 

like the sun, have strong fields conEned to a small fraction of the surface area. 

These are toroidal fields, though, and wiU be discussed separately below.) A small 

class of stars, particularly the peculiar A stars, have strong observed Eelds rang- 

ing up to the tens of kiloGauss. These would be the only candidates likely to 

eject superheavy monopoles by the process described above. 

A simple attempt to avoid this conclusion is to invoke a very strong field 

which extends over a large part of the star’s core, dropping near the surface to 

much lower values. Indeed, it has been argued (e.g., M&e1 and Moss 1977) that 

upper MS stars may generally contain large magnetic fields concentrated deep in 

their interiors (with surface field anticorrelated with angular velocity). In analyz- 

ing the diffusion of dynamc-generated fields to the surface of stars, Schiissler and 

Pahler (1878) found that the field outside the core falls off exponentially, so it is 

reasonable to consider a field of the form B(r) = B,e-qrp). (Note that a dipole 

field, which falls off only as a power of r, will give essentially the same result as 

the uniform field case considered above.) If we require that monopoles with 

energy E, 5 IO” GeV (corresponding to &, 5 1.4X10J m;b’) be expelled by 



the repulsive magnetic core and impose the condition that the surface field B(R) 

= B,e-* be small (5 100 Gauss), then the approximate analysis of Appendix I 

gives A = 14.3 and a central field B, = l.6X10s Gauss. Although below the 

virial limit for stellar stability (Chandrasekhar and Fermi lQ53), this field 

configuration could most likely not be maintained in main sequence stars: the 

steep gradient would be unstable, and the field would diffuse to the surface in a 

time t << rMs. (Scbiissler and Pabler End typical values for A of - 6.) Accord- 

ing to Parker (19783, fields stronger than - 10’ Gauss in the solar core would be 

buoyant and would rapidly escape. More massive stars, with convective cores, 

would be even less likely to have such strong central fields: fields much greater 

than the equipartition value B eq 2: 10’ Gauss (where B,2,/8x = pv&,/2 and we 

have used p = 100 gm cm4 and the convective velocity v,,,, = 3~ 1Oz cm see-t) 

would have to be primordial (rather than dynamogenerated), and would have 

had time to be destroyed or to escape. For example, turbulent convection can 

twist the field lines, reducing the coherence length of the Eeld and causing it to 

decay (recall rd - L*); alternatively, convection might expel the field into the 

radiative envelope, from which it would diffuse to the surface. (For discussions of 

these effects, see Parker (1978) and Stothers (lQ7Q,lQ80).) We conclude that ejec- 

tion by radial fields is unlikely unless the surface field is comparable to Bcj - lo5 

G, which is observationally ruled out iu the vast majority of stars. 

To model the action of toroidal field components, we consider the effect of a 

uniform azimuthal field on monopoles confined to the equatorial plane. We treat 

the magnetic and drag forces as perturbations on circular gravitational orbits. By 

the virial theorem, monopoles orbiting near the stellar surface at radius r s R 

have kinetic energy N GMm/2r. (Here and below we use the fact the M(r) z M 

is generally a very good approximation at radii r 2 R/2 .) The change in kinetic 

energy per orbit is just the total work done, or 
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F Ar = 2mgB - j d’FFd WV 

where Ar is the radial increment per orbit, cd is the drag force, the integral is 

over an (almost) closed orbit, and the change in gravitational potential energy 

has been included. In the perturbative regime, where AE/B , Ar/r << 1, the 

drag term is dominated by the azimuthal component. Thus we use (from 5 B) Fd 

N lop a0 GeV/cm, where the azimuthal orbital speed is 8, 21 (L/c)- N 

&,/J;i. Using the unperturbed orbital period r N Zn(rz/GM)‘/*, Eqn.6.2 gives 

the radial drift velocity 

Ar VI=-= 
r (6.3) 

We are interested in finding a condition on B such that vr 2 vest. However, at 

such a high radial speed, we have v, - vI so that Ar/r - AE/E - 1, and the 

perturbative expression (6.3) is no longer reliable; escaping monopoles do not 

spiral adiabatically outward but instead move on a slightly curved, nearly radial 

path out of the star. We thus expect the ejection condition on an azimuthal field 

to be comparable to Eqn.6.1 for a radial field. Ignoring for the moment that 

Eqn.6.3 breaks down for escaping monopoles, if we set v, = v,, in Eqn.6.3, we 

find 

B$X 1O’G ($1 [ml*+ l-f-1 &] (6.4) 

which is almost identical to Eqn.6.1 . Thus, although Eqn.6.4 formally breaks 

down in the limit of interest, it goes over smoothly to the expression (6.1) which 

gives the value of BLj in both CSS~S. 
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As mentioned above, the strong localized fields observed in sunspots and 

bipolar regions are taken bs the signs 01 a mean dynam*generated Eeld 01 10’ to 

10’ Gauss iu the lower part 01 the solar convection zone (Parker 1978). These 

values are close to B~j and indicate that lower main sequence stars (those with 

dynamos possibly operating in their outer regions) could conceivably eject a 

significant fraction 01 incident monopoles. Mitigating this are the facts that the 

observed solar field is very inhomogeneous, AB/B - 1, the drag term becomes 

more important as r + 0, and field coverage 01 the convective zone is not eom- 

plete (although the fields do migrate and reverse on a timescale 01 10-11 years). 

Also, the radiative solar core may be relatively Eeld-free; if so, since this is where 

the majority 01 monopoles are slowed down, most of them would not be expelled. 

These uncertainties, coupled to the fact that the inferred solar field values are 

close to the ejection threshold, make it difficult to give a reliable estimate of the 

fraction 01 monopoles ejected. Unless the ejection is so efficient as to make this 

fraction unity to very high precision ( several decimal places), which seems very 

unlikely, the numbers used elsewhere in this paper will remain accurate to within 

an order of magnitude. 

VII. Conclusion8 

We have traced the history 01 monopoles in stars from capture to the end 01 

the main sequence. Numerical results confirm the analytic estimate that, for 

GUT-scale monopoles with mass m ;S 5X10” (g/go) GeV/c* traveling with 01 

order the galactic virial velocity - lo%, the number captured over the MS life- 

time is NM 21 lo*’ F-,s (M/w)4.4 ( see Figs.2 and 3). This is significantly more 

monopoles than a typical neutron star captures during its lifetime as a pulsar 

(1ewX 10’ yrs) or even in the age 01 the galaxy; for example, pulsars capture N,f$ 



N lo’* F-t,, monopoles (see Fig.4 ; Freese, Turner, and Schramm 1883). Because 

01 their large mass, captured monopoles gravitationally diffuse to the center 01 

stars, forming a core 01 radius lo* - 10’ cm, depending on support mechanism. 

Although this range of five orders 01 magnitude is ‘microscopic’ compared to stel- 

lar distance scales, it covers a broad range 01 possibilities for the evolution of the 

monopole distribution. At one end, for monopoles supported by their own ther- 

mal pressure, ro, N Id cm; unless the flux is very low, m annihilation drssti- 

tally reduces the number 01 monopoles, to Nl;r9 N 10” F!# m;b’/*. The prolific 

annihilations generate heat at a catastrophic rate, Ch 
hllll - 

8~ 10” F-,s erg gm-’ set-*, but do not appear to qualitatively affect the luminos- 

ity or structure 01 the star (except for the possibility 01 local onset 01 convection). 

At the other end, a central field 01 several hundred Gauss can support monopoles 

in a distended configuration with rm*s - 10’ cm. In this case, annihilations are 

unimportant, and essentially all the captured monopoles survive. There may still 

be significant energy generation due to catalysis, mv N Lt 

lo9 m,s u-B erg grr-’ set -‘, but again the star itseIl is unaffected. The uncertain- 

ties surrounding stellar magnetic fields hinder a detailed analysis 01 monopole 

eject,ion. It appears unlikely, however, that non-magnetic stars have strong hid- 

den fields with such complete coverage that they eject aU but a minute percen- 

tage 01 monopoles. 

Finally, we summarize the relation 01 this work to the neutron star catalysis 

Limits mentioned in the Introduction. We may interpret the upper bound on the 

catalysis luminosity 01 nearby old pulsars as a limit on the number 01 monopoles 

present N,,, 5 10”. Given the expression above for NpC&, thii gives the usually 

quoted bound F-,su-, Ls. IO”. Inclusion 01 MS capture strengthens this bound by 

a factor - lo* - 10’ (the ratio 01 NB to NpfQ, even for thermally supported 

monopoles (Cl. Figure 4). Actually, the argument for strengthening the Bux 
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bound rests on slightly Ermer ground than this. Recall that in the advanced 

stages 01 stellar evolution, wh may be reduced by up to a factor N ld. In this 

case, from Fig.4, for thermally supported monopoles, inclusion 01 MS capture 

would not significantly strengthen the catalysis Rux bound (i.e., the reduced Nth 

- lOI for F -I6 .- IO”). Neutron star progenitors, however, are generally 

believed to have maSses M 2 8%; in these stars, monopoles are supported by 

convection throughout most 01 the precollapse evolution, and the stronger limit 

above is intact. All 01 the considerations above assume that monopoles which sur- 

vive the MS also survive the collapse to the neutron star. The conditions under 

which this assumption should hold are discussed in 5 IVa.2 ; they appear 

su&iently general for one to have confidence in the improved limits. 
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Appendix I: Radial Magnetic Field 

In this Appendix, we calculate the parameters 01 an exponentially decreasing 

radial magnetic field B(r) = B,, e-Nrfn) i which would eject a significant fraction 



01 monopoles from the sun. We assume monopole mass m = 10” GeV/c2 and 

charge g = gn. The repulsive magnetic potential ejects monopoles by keeping 

them out of the stellar core, where they would otherwise efficiently lose energy to 

electrons. Recall that a monopole is not captured if its total energy loss through 

the star is less than its initial kinetic energy, AE s E,. Assuming the monopole 

velocity distribution is peaked near the galactic virial velocity vDJ x 10J c, 

which corresponds to E, w 10” GeV for ml6 = g/go = 1, a significant number 

will be expelled if AE 5 10” GeV. This will give a condition on the radius rb 01 

the core from which monopoles must be excluded for expulsion. From 5 Ra, the 

approximate energy loss is dE/dx N lop B GeV/cm (to within an order 01 magni- 

tude). For monopoles with the virial velocity, the speed inside the star is always 

close to &, ; we approximate the density profile by p(r) = pc e-‘*tr/m* (typicauy 

accurate to SO%, although some upper MS models have broader distributions). 

The approximate energy lost by a monopole which bounces off the magnetic core 

at r = r,, is then (ii GeV) 

b 

AEF=: 20p$,,$e-‘*(‘fi)’ dr = 5R&dc 
R 

1 - erl(t?v&/R)] (A.l) 

(where R is in cm, p in gm/cm’ , and err(x) is the error function). Using typical 

stellar values R N 7X10”, &, 2! 2X lOa, pc N 100, and the previous condition 

AE < 10” GeV, Eqn.A.l gives rb/R N 0.4 . To be expelled, monopoles must 

bounce off the potential u(r) at rb , m we require 

U(r,) 2 Emon = E, - AE/2 = 5X10’ GeV. The total magnetic and gravita- 

tional potential is U(r) N (gB,, R/A) (e-3@) - e”) - GMm/r (where the 

approximation to the gravitational term is accurate to N 10% down to r m rk). 

Using the bounce condition on u(rb) , solar values for M and R, and imposing the 

condition that the surface field be small, B(R) = B, eeA 5 100 G, gives (100 
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Gauss/A)gR (e”.M - 1 ) 2 5.5X10”, which has the solution A = 14.3, 

B, = lO& = 1.6~10~ Gauss. This estimate is subject to considerable uncer- 

tainty, since B0 is exponentially dependent on A and p(r) is also fitted with an 

exponential. We believe, however, that the value for rbr and thus for A and B,, 

are lower limits. 
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Figure Captions 

Il] Monopole trajectory through the star and coordinate system described in $ 

Il. Here v, and b, (v, and b, ) are the velocity and impact parameter of the 

monopole at infinity (surface). Note that the coordinate system is oriented so 

that 7* = -v&. 

[2] The number of monopoles captured, in units of the Parker flux, as a func- 

tion of stellar and monopole mass, for monopoles with Dirac charge and 

velocity far from the star @, = 104. The error bars for the 5& and 15% 

data indicate the spread in the number captured between evolved and ZAMS 

models (all other models are ZAMS). In the 256 results, error bars show 

the spread between the Woosley (1983) model and a polytrope with index 

n = 3. 

[3] Same as figure 2, for monopoles with twice the Disc charge. 

The number of monopoles surviving in a 8& star as a function of the 

monopole flux, in units of the Parker flux. For this plot we have taken 

g = gD ? ml6 = 1 , and /?, = le. No,,, Nmo, and NT” are the equili- 

brium monopole abundances in the case that monopoles are supported 

against gravity by convection, magnetic fields, and thermal pressure, see 5 

HI. (Bra is the magnetic field in Gauss.) N# is the number of monopoles 

captured by the star during its MS lifetime (as in Fig.2). For reference, the 

number of monopoles captured by a few X 10’ yr old pulsar is shown as the 

broken line labeled NFfj . Einstein observations of several old, nearby radio 

pulsars restrict the number of monopoles in these objects to be s lOI* u;& 



-so- 

(Freese, Turner, and Schramm 1983), resulting in a monopole flux limit 

F, o-B s 10-** cm-* sr-l se8 (shown by the dotted lines). Taking into 

account the monopoles captured by the MS progenitors of these pulsars 

improves this limit by a factor of O(10’) (shown by the dotted line). The 

approximate scalings of NC,-,N, N,,, N,, and NC2 with stellar maPS and 

monopole properties are given in EqnsA.Sa,b,c, and 2.3. 
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M/“Q 

o. 6b 
ld 

0.64 2.0x10-3 
0.87 ~.2~10-3 

1C 2.1~0-3 
2.82h 

0.95 
2.0 2.4.10-3 

se 
7.083 

2.4 3.0x10-3 

9f 
3.3 3.0x10-3 
3.4 3.3x10-3 

158 4.6 
zik 

3.7x10-3 
6.0 4.2x10-3 

Table 1 - Zero-age Properties of the MS Models Useda 

R/RQ 5 es0 T,/Io~~ P,(gcm -3 L/L@ 

0.81 65 
1.4 85 
1.4 90 
2.2 38 
2.7 21 
2.0 12 

;:1 611 
3.6 3.9 

0.56 2.6~10" 
0.73 1 .OxlO'O 
0.71 1.0x10'0 

63 2.2x108 
630 6.4~10~ 

2x103 
4.5x103 

3.3x107 

2.1 xl04 
2.1x107 
1.0x107 

1.0.105 5.6~10~ 

TMs(Y’S) 

aWhere M - 1 gg x lo33Bm, RQ 0 - 1033erg set -7 = 6.96 x lolOcm. and LQ = 3.90 x 

bSchwarzschild’(1957), Table 28.4 (from Str6mgren 1965). 
‘Clayton (1968). Table 6-5. 
dNovotny (1973), Table 7-14 (from Iben 1965). 

P ovotny (19731, Table 7-25 (from Iben 1966). 
Novotny (19731, Table 7-32 (from Iben unpublished). 

BNovotny (19731, Table 7-35 (from Iben 1965). 
?Clayton (19681, Table 6-2. 
JClayton (19681, Table 6-3. 
%oosley (1983). 



Table 2 - Critical impact parameter for monopole capture divided by the 
capture radius Clb rit!~(j+~2 /By)"*]. Note, dashed line indicates 
that even a monopoie with ze%'impact parameter will not be stopped. 

Stellar Mass (in M,) 

Clh) S” 0.6 

10'5 

1016 

10'7 

10'8 

10'9 

10'5 

10'6 

10'7 

10'8 

10'9 

L 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

0.98 0.98 0.98 
0.98 0.98 0.98 

!! 
0.96 
0.98 

= 10-4 

0.98 I 
0.98 

I 

1.98 0.98 0.98 0.98 0.98 
0.98 0.98 0.98 0.98 

0.98 0.96 0.98 0.96 
0.98 0.98 0.98 0.94 

0.98 
0.98 

3.96 0.96 0.98 0.98 0.98 
0.96 0.98 0.98 0.98 

0.96 0.90 0.92 0.84 0.94 0.86 0.86 0.98 0.90 
0.96 0.96 0.94 0.88 0.98 0.90 0.90 0.98 0.94 

0.88 
0.94 

0.54 
0.78 

0.78 0.76 0.70 0.74 0.72 0.76 0.60 0.80 
0.88 0.86 0.78 0.84 0.82 0.84 0.94 0.88 

0.56 0.54 0.52 0.54 0.52 0.54 0.38 0.58 
0.72 0.68 0.64 0.68 0.66 0.7c 0.48 0.74 

6-3x11 3-l - 
0.98 0.96 0.98 0.94 0.98 
0.98 0.98 0.98 0.94 0.98 

0.96 0.92 0.92 0.86 0.98 
0.96 0.96 0.96 0.90 0.98 

I 

b.94 

1.88 

0.94 0.94 0.98 0.96 
0.96 0.98 0.98 0.98 

0.88 0.88 0.98 0.92 
0.90 0.92 0.98 0.94 

0.88 0.80 0.78 0.70 0.76 0.74 0.76 0.62 0.82 
0.94 0.88 0.86 0.80 0.84 0.82 0.84 0.96 0.88 

0.56 0.58 0.54 0.52 0.56 0.52 0.56 
0.78 0.72 0.70 0.64 0.68 0.68 0.7c 

0.40 
0.50 

--- 
--- 

0.60 
0.74 

--- 

0.14 

--- --- --- --- 

0.38 0.36 0.36 0.36 

--- --- 

0.26 0.32 

--- 

0.28 

1 1 3 5 7a 

T 
7 9 15 25 



10'5 

1016 

1017 

1018 

10'5 

1016 

10'7 

10'5 

10'6 

10'5 

I 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 I 
2 

I 
2 

I 
2 

0.96 
0.9t 

0.86 
0.91 

0.50 
0.7' 

1.90 
0.94 

3.76 
0.86 

3.54 
0.68 

--- 
--- 

--- 

0.34 

0.82 
0.9; 

0.46 
0.7; 

( 

i 

I 

i 

I 

I 

i 

> 

> 

( 
, 

, 

I 

0.72 
0.82 

0.46 
0.6; 

--- 

0.2; 

--- 

0.32 

3.50 
0.76 

--- 

0.32 

--- 

0.30 

0.90 
0.91 

0.74 
0.81 

0.50 
0.6L 

--- 

0.3; 

0.68 
0.8; 

0.42 
0.5t 

--- 

0.2t 

, 

b 

, I.44 
3.60 

_-- 

0.32 

_-- 

3.28 

1.82 0.94 
0.88 0.98 

I 
3.68 0.74 
0.76 0.82 

3.48 0.52 
0.62 0.66 

__- --- 

0.32 0.32 

0.60 
0.70 

( 
I 

, 
I 

I 
i 

> 

> 

; 

3 

( 
I 

/ 

, 

0.42 
0.54 

--- 

0.28 

3.40 
0.56 

--- 

0.28 

--- 

0.26 

6 = lo-, 3 

0.84 

0.70 

6 = 3 x 10-3 

0.68 
0.78 

0.46 
0.60 

--- 

0.32 

E- 10-2 

I.34 
3.48 

0.40 
0.54 

_-- --- 

0.24 0.28 

6 - lo-' 

0.64 

0.4; 

3.34 

--- 

1 

_-- --- 

I I 

--- 

0.20 0.20 

2.84 0.86 1.98 
0.90 0.90 0.98 

0.90 
0.94 

3.72 0.76 3.60 0.82 
0.8~ 0.82 0.94 0.86 

0.50 0.54 0.38 0.56 
0.64 0.68 0.48 0.74 

--- --- 

O.lE 0.24 

0.66 
0.7c 

0.70 
0.78 

0.42 0.48 
0.5E 0.62 

--- --- --- --- 
0.21 0.28 --- 0.26 

I.36 0.40 3.36 0.44 
0.52 0.56 0.54 0.62 

--- --- _-- --- 

0.24 0.26 0.20 0.26 

_-- 

0.14 0.14 

--- 
--- 

0.62 0.76 
0.96 0.84 

0.38 0.54 
0.5c 0.76 

0.20 

0.16 

“This 7M model (also from Clayton (1968), Table 6-3) differs from the 
other 

TM? 
model only in composition, and was used to explore the 

sensitivi y of our results to the stellar model used. Because of the 
close agreement between the two models, we only ran a few values of mM 
and 6. 


